基于HoFiBiAFM的点击率预测模型

CLICK-THROUGH RATE PREDICTION MODEL BASED ON HOFIBIAFM

  • 摘要: 在推荐系统中,FiBiNET、AFM等深度学习模型能够关注特征的重要性进行点击率预测。其中FiBiNET的深层模型使用DNN网络相当隐式地对特征交互进行建模,但是使用DNN学习高阶特征可能导致低阶特征交叉被稀释。通过叠加多层SENET注意力机制的方式学习高阶重要性特征,并加入高阶注意力分解机共同更新特征表示,构成一种新的点击率预测模型HoFiBiAFM。通过在Movielens-100K和Movielens-1M数据集上分别与其他CTR预测模型进行分类任务和回归任务的对比实验,结果验证了HoFiBiAFM模型的点击率预测效果。

     

    Abstract: In the recommender system, deep learning models such as FiBiNET and AFM can focus on the importance of features for click-through rate prediction. FiBiNET's deep model uses DNN network to model feature interaction quite implicitly, but using DNN to learn higher-order features may lead to dilution of lower-order feature crossing. High-order important features were learned by superposing multiple SENET attention mechanisms and high-order attentive factorization machine was added to update feature representations. A new click rate prediction model HoFiBiAFM was formed. By comparing the classification task and regression task with other CTR prediction models on the Movielens-100K and Movielens-1M datasets, HoFiBiAFM's click-through prediction performance was verified.

     

/

返回文章
返回