基于DRL和智能探索机制的CMPLDWG参数辨识

PARAMETER IDENTIFICATION OF CMPLDWG BASED ON DRL AND INTELLIGENT EXPLORATION MECHANISM

  • 摘要: 为了有效处理分布式发电复合负载系统固有的高度非线性和非凸性,提升模型的辨识精度与效率,提出一种基于深度强化学习和智能探索机制的参数辨识方法。该文利用数据驱JP+1动的特征核化套索方法进行参数灵敏度分析,得到反映参数对模型动力学贡献的灵敏度权值;利用具有智能探测功能的改进深度强化学习进行参数辨识。数值实验结果表明该方法具有较高的辨识精度,能够有效避免陷入局部最优,并且具有较快的学习速度。

     

    Abstract: In order to effectively deal with the inherent high nonlinearity and non-convexity of the distributed generation composite load system and improve the identification accuracy and efficiency of the model, a parameter identification method based on deep reinforcement learning and intelligent exploration mechanism is proposed. The parameter sensitivity analysis was carried out by using the data-driven feature kernel Lasso method, and the sensitivity weights reflecting the contribution of parameters to the model dynamics were obtained. The improved deep reinforcement learning with intelligent detection function was used for parameter identification. The numerical experiment results show that the method has high identification accuracy, can effectively avoid falling into local optimum, and has fast learning speed.

     

/

返回文章
返回