基于深度学习的人脸属性编辑研究概述

OVERVIEW OF RESEARCH ON FACE ATTRIBUTE EDITING IN DEEP LEARNING

  • 摘要: 近几年来,人脸属性编辑技术引起了民众和研究人员广泛地关注,各大娱乐软件将人脸属性编辑技术应用于图像编辑中,实现了改变人的发色、添加胡子和改变年龄等功能。研究人员利用人脸属性编辑算法,生成不同姿态、表情,以及在不同光照下的人脸图像,以辅助人脸识别系统,提升识别精度。主要介绍基于深度学习的人脸属性编辑的发展历程,分类归纳其中的主要技术路线和相关算法。基于深度学习的人脸属性编辑主要由基于属性标签的人脸属性编辑、基于参考条件信息的人脸属性编辑、基于隐编码的属性编辑三个部分构成。对深度学习中人脸属性编辑这一领域的发展趋势进行系统性的总结与展望,分析人脸属性编辑任务在更高分辨率人脸图像上的发展潜力,以及在更真实的人脸视频生成等方面潜在的提升空间。

     

    Abstract: In recent years, face attribute editing has attracted widespread attention from the public and researchers. The major entertainment software has applied the face attribute editing technology to image editing, and realized functions such as changing human hair color, adding beard, and changing age. Researchers used face attribute editing algorithms to generate different postures, expressions, and face images under different lighting to assist the face recognition system and improve recognition accuracy. This paper mainly introduced the development process of face attribute editing based on deep learning, and classified and summarized the main technical routes and related algorithms. Face attribute editing was mainly composed of three parts: face attribute editing based on attribute label, face attribute editing based on reference condition information, and face attribute editing based on latent code. This paper summarized and prospected the development trend of this topic. It analyzed the development potential of higher-resolution face attribute editing and other aspects of potential room for improvement.

     

/

返回文章
返回