基于卷积神经网络的卵巢囊腺瘤CT图像病灶分割

OVARIAN CYSTADENOMA CT IMAGE LESION SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORK

  • 摘要: 卵巢囊腺瘤是一种病发于卵巢内的疾病。为了实现卵巢CT图像的病灶自动分割,提出一种基于改进的U-net模型的卵巢囊腺瘤CT图像病灶分割方法,将VGG16作为编码器,进一步简化U-net模型结构,并且结合CT图像特征进行数据增强。基于临床诊断数据构建一个卵巢CT图像数据集,进行模型训练和评估。模型在测试集上的IoU(Intersection over Union)达到了88.85%,AUC达到了99.72%,表明改进的U-net模型进行卵巢囊腺瘤病灶分割的可行性和精确性。与原始U-net模型相比,所提出方法能够在不损失分割准确度的前提下缩减模型规模,更适用于辅助临床诊断。

     

    Abstract: Ovarian cystadenoma is a disease that occurs in the ovary. In order to achieve automatic lesion segmentation of ovarian CT images, this paper proposes a CT image lesion segmentation method for ovarian cystadenoma based on an improved U-net model, using VGG16 as an encoder to further simplifying the structure of the U-net model, and combining the CT image features for data enhancement. This paper constructed an ovarian CT image dataset based on clinical diagnostic data for model training and evaluation. The model achieved an IoU of 88.85% and an AUC of 99.72% on the testing set, demonstrating the feasibility and accuracy of the improved U-net model for segmentation of ovarian cystadenoma lesions. Compared with the original U-net model, the proposed improvement can reduce the model size without losing segmentation accuracy and is more suitable for assisting clinical diagnosis.

     

/

返回文章
返回