基于异质信息网络的时空预测算法

SPATIO-TEMPORAL PREDICTION ALGORITHM BASED ON HETEROGENEOUS INFORMATION NETWORK

  • 摘要: 时空数据挖掘是数据挖掘领域的一个重要分支,在现实世界中有着大量的应用。与时间序列预测相比,时空预测算法需要同时考虑序列数据的时序关系和空间关系,具有一定的复杂性。为了探索时空数据的本质,有效地捕获复杂的时空关系,提出一种基于异质信息网络的时空预测算法,显式地将时空数据建模为一个异质信息网络,采用时空信息传播路径来表示丰富的时空交互。相较于已有的时空模型利用不同的神经网络来捕获时间和空间的依赖关系,利用元路径将时空关系统一起来,为时空数据挖掘提供一种新的思路。在两个真实世界的公开数据集上进行大量实验,验证了该模型的有效性。

     

    Abstract: Spatio-temporal data mining is an important branch in the field of data mining which has a large number of applications in the real world. Compared with time series prediction, spatio-temporal prediction algorithms need to consider both the temporal and spatial relationships of time series, which has certain complexity. In order to explore the nature of spatio-temporal data and effectively capture the complex spatio-temporal relationships, a spatio-temporal prediction algorithm based on heterogeneous information networks is proposed in the paper, which explicitly models spatio-temporal data as a heterogeneous information network and employs spatio-temporal information propagation paths to represent the rich spatio-temporal interactions. Compared with traditional spatio-temporal models that use different neural networks to capture temporal and spatial dependencies separately, the paper used meta-paths to unify spatio-temporal relationships, providing a new way for spatio-temporal data mining. Extensive experiments were conducted on two real-world open datasets to verify the effectiveness of the model.

     

/

返回文章
返回