多层级在线类激活图学习的弱监督语义分割

WEAKLY SUPERVISED SEMANTIC SEGMENTATION BASED ON MULTI-LEVEL ONLINE CLASS ACTIVATION MAPPING LEARNING

  • 摘要: 针对弱监督语义分割任务中存在类激活图不完整、细节信息丢失的问题。提出一种多层级在线类激活图学习的模型,其中精细化梯度类激活图生成算法利用分类损失函数产生的梯度值对特征图进行精确位置加权,得到更完整的前景区域。多层在线类激活图叠加机制对主干网络各层特征图产生的类激活图进行迭代融合,对各层的迭代融合结果进行结合,实现了类激活图细节信息的补充。在实验方面,采用了PASCAL VOC2012数据集进行实验验证,实验结果表明,该模型具有较好的分割效果并对分割精度有较大提升,验证了其有效性。

     

    Abstract: Aiming at the problems of incomplete class activation maps and detailed information loss in weakly supervised semantic segmentation task, this paper proposes a multi-level online accumulation framework for class activation maps learning. It included a refined gradient class activation mapping generation module and a multilayer online accumulation of class activation mappings module. The refined gradient class activation mapping generation module used the gradient information to generate more accurate class activation map. Multilayer online accumulation of class activation mappings module iteratively fused the class activation maps which were generated by each layer. This module combined the result of online class activation map in each layer to obtain the final class activation map. Experiments adapted PASCAL VOC2012 as dataset. Experiments show that this algorithm has good segmentation effect and greatly improves the segmentation accuracy, which verify the effectiveness of the proposed algorithm.

     

/

返回文章
返回